Phần II: LỜI GIẢI
Bài 1/1999 - Trò chơi cùng nhau
qua cầu
(Dành cho học sinh Tiểu học)
Đáp số: 17 phút. Cách đi như sau:
Lượt 1: 2 + 1 sang, 1 quay về thời gian: 3 phút
Lượt 2: 10 + 5 sang, 2 quay về thời gian: 12 phút
Lượt 3: 2 + 1 sang thời gian: 2 phút
Tổng thời gian: 17 phút
Bài 2/1999 - Tổ
chức tham quan
(Dành cho học sinh THCS)
Program bai2;
uses crt;
const fi = 'P2.inp';
fo = 'P2.out';
type _type=array[1..2] of integer;
mang=array[1..200] of
_type;
var f:text;
d,v:mang;
m,n:byte;
procedure input;
var i:byte;
begin
assign(f,fi);
reset(f);
readln(f,n,m);
for i:=1 to n do
begin
read(f,d[i,1]);
d[i,2]:=i;
end;
readln(f);
for i:=1 to m do
begin
read(f,v[i,1]);
v[i,2]:=i;
end;
close(f);
end;
procedure sapxeptang(var m:mang;n:byte);
var d:_type;
i,j:byte;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if m[j,1]m[i,1] then
begin
d:=m[j];
m[j]:=m[i];
m[i]:=d;
end;
end;
var i:byte;
tong:integer;
begin
input;
sapxeptang(d,n);
sapxeptang(v,m);
tong:=0;
for i:=1 to n do
tong:=tong+v[n-i+1,1]*d[i,1];
for i:=1 to n do
v[i,1]:=d[n-i+1,2];
xapxeptang(v,n);
assign(f,fo);
rewrite(f);
writeln(f,tong);
for i:=1 to n do
writeln(f,v[i,2]);
close(f);
end.
Nhận xét: Chương trình trên sẽ chạy chậm nếu chúng ta mở rộng bài
toán (chẳng hạn n <= m <= 8000). Sau đây là cách giải khác:
const
Inp = 'P2.INP';
Out = 'P2.OUT';
var
n, m: Integer;
Val, Pos: array[1..2, 1..8000] of Integer;
procedure ReadInput;
var
i: Integer;
hf: Text;
begin
Assign(hf, Inp);
Reset(hf);
Readln(hf, n, m);
for i := 1 to n do Read(hf, Val[1, i]);
Readln(hf);
for i := 1 to m do Read(hf, Val[2, i]);
Close(hf);
for i := 1 to m do
begin
Pos[1, i] := i;
Pos[2, i] := i;
end;
end;
procedure QuickSort(t, l, r:
Integer);
var
x, tg, i, j: Integer;
begin
x := Val[t, (l + r) div 2];
i := l; j := r;
repeat
while Val[t, i] < x do Inc(i);
while Val[t, j] > x do Dec(j);
if i <= j then
begin
Tg := Val[t, i]; Val[t, i] :=
Val[t, j]; Val[t, j] := Tg;
Tg := Pos[t, i]; Pos[t, i] := Pos[t, j];
Pos[t, j] := Tg;
Inc(i); Dec(j);
end;
until i > j;
if i < r then QuickSort(t, i, r);
if j > l then QuickSort(t, l, j);
end;
procedure WriteOutput;
var
i: Integer;
Sum: LongInt;
hf: Text;
begin
Sum := 0;
for i := 1 to n do Inc(Sum, Val[1, n - i + 1] * Val[2, i]);
for i := 1 to n do Val[1, Pos[1, n - i + 1]] := Pos[2, i];
Assign(hf, Out);
Rewrite(hf);
Writeln(hf, Sum);
for i := 1 to n do Writeln(hf, Val[1, i]);
Close(hf);
end;
begin
ReadInput;
QuickSort(1, 1, n);
QuickSort(2, 1, m);
WriteOutput;
end.
Bài 3/1999 - Mạng tế bào
(Dành cho học sinh THPT)
Program Bai3/1999;
uses crt;
const fi = 'P3.inp';
fo = 'P3.out';
type mang=array[0..201,0..201] of byte;
var m,n,t:byte;
s:string;
a:mang;
f:text;
b,c:^mang;
procedure input;
var i,j:byte;
begin
assign(f,fi);
reset(f);
readln(f,m,n,t);
readln(f,s);
for i:=1 to m do
begin
for j:=1 to n do read(f,a[i,j]);
end;
close(f);
new(b);
new(c);
end;
procedure hien;
var i,j:byte;
begin
for i:=1 to m do
for j:=1 to n do
begin
gotoxy(j*2,i);
write(b^[i,j]);
end;
end;
procedure trans(ch:char);
var i,j,d:byte;
begin
fillchar(c^,sizeof(mang),0);
for i:=1 to m do
for j:=1 to n do
begin
d:=b^[i,j];
case a[i,j] of
1:inc(c^[i,j-1],d);
2:inc(c^[i,j+1],d);
3:inc(c^[i-1,j],d);
4:inc(c^[i+1,j],d);
5:begin
inc(c^[i-1,j],d);inc(c^[i+1,j],d); end;
6:begin
inc(c^[i,j-1],d);inc(c^[i,j+1],d); end;
7:begin
inc(c^[i,j-1],d);inc(c^[i-1,j],d); end;
8:begin
inc(c^[i,j+1],d);inc(c^[i+1,j],d); end;
end;
end;
if ch<>'X' then
b^[1,1]:=ord(ch)-48;
for i:=1 to m do
for j:=1 to n do
if (i<>1) or
(j<>1) then b^[i,j]:=byte(c^[i,j]<>0);
hien;
readln;
end;
procedure output;
var i,j:byte;
begin
assign(f,fo);
rewrite(f);
for i:=1 to m do
begin
for j:=1 to n do write(f,'
',b^[i,j]);
writeln(f);
end;
close(f);
end;
var i:byte;
begin
clrscr;
input;
fillchar(b^,sizeof(mang),0);
fillchar(c^,sizeof(mang),0);
for i:=1 to t do
trans(s[i]);
output;
end.
Bài 4/1999 - Trò chơi bốc sỏi
(Dành cho học sinh Tiểu học)
Huy sẽ
là người thắng cuộc. Thật vậy số sỏi ban đầu là 101 là một số có dạng 5k+1,
nghĩa là số nếu chia 5 sẽ còn dư 1. Hoàng phải bốc trước, do số sỏi của Hoàng
phải lấy là từ 1 đến 4 do đó sau lượt đi đầu tiên, số sỏi còn lại sẽ lớn hơn
96. Huy sẽ bốc tiếp theo sao cho số sỏi còn lại phải là 96, nghĩa là số dạng
5k+1. Tương tự như vậy, Huy luôn luôn chủ động được để sau lần bốc của mình số
sỏi còn lại là 5k+1. Lần cuối cùng số sỏi còn lại chỉ là 1 và Hoàng bắt buộc
phải bốc viên cuối cùng và ... thua.
Bài toán tổng quát: có thể cho số viên bi là
5k+1 viên.
Bài 5/1999 - 12
viên bi
(Dành cho học sinh THCS)
Ta sẽ
chỉ ra rằng tồn tại 3 lần cân để chỉ ra được viên bi đặc biệt đó.
Gọi các
viên bi này lần lượt là 1, 2, ..., 12. Trong khi mô tả thuật toán ta dùng ký
hiệu
để mô
tả quả hòn bi thứ n
để mô
tả một hòn bi bất kỳ
Mô tả
một phép cân.
Ta gọi
viên bi có trọng lượng khác là đđ.
I. Lần cân thứ nhất. Lấy ra 8 hòn bi bất kỳ và chia làm 2 phần để cân:
Có 2
trường hợp xảy ra:
1.1. Cân
trên cân bằng. Suy ra viên bi đđ (không rõ nặng nhẹ) nằm trong 4 viên bi còn
lại (không mang ra cân)
1.2. Cân
trên không cân bằng.
1.2.1.
Nếu (1) nhẹ hơn (2) suy ra hoặc đđ là nhẹ nằm trong (1) hoặc đđ là nặng nằm
trong (2).
1.2.2.
Nếu (1) nặng hơn (2) suy ra hoặc đđ là nặng nằm trong (1) hoặc đđ là nhẹ nằm
trong (2).
Dễ thấy
các trường hợp 1.2.1. và 1.2.2. là tương tự nhau.
Trong
mọi trường hợp ta có kết luận đđ nằm trong số 8 viên hoặc nhẹ trong 4 hoặc nặng
trong 4 còn lại.
II. Xét trường hợp 1.1: Tìm được 4 viên bi
chứa đđ
Gọi các
hòn bi này là 1, 2, 3, 4
Lần cân thứ hai:
Xét các
trường hợp sau:
2.1. Cân
thăng bằng. Kết luận: viên bi 4 chính là đđ.
2.2.
Trường hợp cân trái nhẹ hơn phải (dấu <). Suy ra hoặc 3 là đđ nặng, hoặc 1
hoặc 2 là đđ nhẹ.
2.3.
Trường hợp cân trái nặng hơn phải (dấu >). Suy ra hoặc 3 là đđ nhẹ, hoặc 1
hoặc 2 là đđ nặng.
Dễ thấy
rằng các trường hợp 2.2. và 2.3. là tương tự nhau.
III. Xét trường hợp 2.1: viên bi 4 chính là đđ
Lần cân thứ ba:
Nếu cân
nghiêng < thì 4 là đđ nhẹ, nếu cân nghiêng > thì 4 là đđ nặng.
IV. Xét trường hợp 2.2. Hoặc 3 là đđ nặng, hoặc 1 hoặc 2 là đđ nhẹ.
Lần cân thứ ba:
Nếu cân
thăng bằng thì ta có 1 là hòn bi đđ nhẹ.
Nếu cân
nghiêng > thì ta có 3 là hòn bi đđ nặng.
Nếu cân
nghiêng < thì ta có 2 là hòn bi nhẹ.
V. Xét trường hợp 2.3. Hoặc 3 là đđ nhẹ, hoặc 1 hoặc 2 là đđ nặng.
Cách
làm tương tự trường hợp 2.2 mô tả trong mục IV ở trên.
VI. Xét trường hợp 1.2.1.
Hoặc đđ
là nhẹ trong 1, 2, 3, 4 hoặc đđ là nặng trong 5, 6, 7, 8.
Lần cân thứ hai:
6.1.
Trường hợp cân thăng bằng. Suy ra đđ sẽ phải nằm trong 4, 7, 8, và do đó theo
giả thiết của trường hợp này ta có hoặc đđ là 4 nhẹ, hoặc đđ là nặng trong 7,
8. Dễ nhận thấy trường hợp này hoàn toàn tương tự như 2.2. Bước tiếp theo làm
tương tự như mô tả trong IV.
6.2.
Trường hợp cân nghiêng <, suy ra hoặc đđ là nhẹ rơi vào 1, 2 hoặc đđ là 6
nặng. Trường hợp này cũng hoàn toàn tương tự như 2.2. Bước tiếp theo làm tương
tự như mô tả trong IV.
6.3.
Trường hợp cân nghiêng >, suy ra hoặc đđ là 5 nặng, hoặc đđ là nhẹ 3.
VII. Xét trường hợp 6.3.
Hoặc đđ
là 5 nặng, hoặc đđ là 3 nhẹ.
Lần cân thứ ba:
Nếu cân
thăng bằng, suy ra 5 là đđ nặng.
Nếu cân
nghiêng < suy ra 3 là đđ nhẹ.
Tất cả
các trường hợp của bài toán đã được xem xét.
Sau đây
là chương trình chi tiết.
Program bai5;
Uses crt;
Const
st1=' nang hon.';
st2=' nhe hon.';
Var i, kq1: integer;
kq2: string;
ch: char;
(* Thủ tục Kq *)
Procedure kq(a: integer; b: string);
Begin
kq1:=a;
kq2:=b;
End;
(* Thủ tục Cân *)
Procedure can(lan: integer; t1, t2, t3, t4, p1, p2,
p3, p4: string);
Begin
Writeln('Lần cân thứ', lan, ' :');
Writeln;
Writeln(' ', t1, ' ', t2, ' ', t3, ' ', t4, ' ',
p1, ' ', p2, ' ', p3, ' ', p4);
Writeln;
Write(' Bên nào nặng hơn? Trái(t)/Phải(p)/ Hay cân
bằng(c)');
Repeat
ch:=readkey;
ch:=upcase(ch);
Until (ch in ['P', 'T', 'C']);
Writeln(ch);
Writeln(*==========================================*);
End;
(* Thủ tục Play *)
Procedure play;
Begin
Writeln('Có 12 quả cân: 1 2 3 4 5 6 7 8 9 10 11
12');
Writeln('Cho phép bạn chọn ra một quả cân nặng hơn
hay nhẹ hơn những quả khác.');
can(1, '1', '2', '3', '4', '5', '6', '7', '8');
If (ch='T') then {T}
Begin
can(2, '1', '2', '5', ' ', '3', '4', '6', ' ');
If (ch='T') then {TT}
Begin
can(3, '1', '6', ' ', ' ', '7', '8', ' ', ' ');
If ch='T' then kq(1, st1); {TTT}
If ch='P' then kq(6, st2); {TTP}
If ch='C' then kq(2, st1); {TTC}
End
Else If (ch='P') then {TP}
Begin
can(3, '3', '5', ' ', ' ', '7', '8', ' ', ' ');
If ch='T' then kq(3, st1); {TPT}
If ch='P' then kq(5, st2); {TPP}
If ch='C' then kq(4, st1); {TPC}
End
Else If (ch='C') then {TC}
Begin
can(3, '7', ' ', ' ', ' ', ' ', '8', ' ', ' ');
If ch='T' then kq(8, st2); {TCT}
If ch='P' then kq(7, st2); {TCP}
If ch='C' then
Begin
Writeln('Trả lời sai!'); kq2:=st2;
End;
End;
End
Else If (ch='P') then {P}
Begin
can(2, '5', '6', '1', ' ', '7', '8', '2', ' ');
If (ch='T') then {PT}
Begin
can(3, '5', '2', ' ', ' ', '3', '4', ' ', ' ');
If ch='T' then kq(5, st1);
If ch='P' then kq(2, st2);
If ch='C' then kq(6, st1);
End
Else If (ch='P') then {PP}
Begin
can(3, '7', '1', ' ', ' ', '3', '4', ' ', ' ');
If ch='T' then kq(7, st1);
If ch='P' then kq(1, st2);
If ch='C' then kq(8, st1);
End
Else If (ch='C') then {PC}
Begin
can(3, '3', ' ', ' ', ' ', ' ', '4', ' ', '');
If ch='T' then kq(4, st2);
If ch='P' then kq(3, st2);
If ch='C' then
Begin
Writeln('Trả
lời sai !'); kq2:=st2;
End;
End;
End
Else If (ch='C') then {C}
Begin
can(2, '9', '10', '11', ' ', '1', '2', '3', ' ');
If (ch='T') then
{CT}
Begin
can(3, '9', ' ', ' ', ' ', '10', ' ', ' ', ' ');
If (ch='T') then kq(9, st1);
If (ch='P') then kq(10, st1);
If (ch='C') then kq(11, st1);
End
Else If (ch='P') then {CP}
Begin
can(3, '9', ' ', ' ', ' ', '10', ' ', ' ', ' ');
If (ch='T') then kq(10, st2);
If (ch='P') then kq(9, st2);
If (ch='C') then kq(11, st2); End
Else If (ch='C') then {CC}
Begin
can(3, '12', ' ', ' ', ' ', '1', ' ', ' ', ' ');
If (ch='T') then kq(12, st1);
If (ch='P') then kq(12, st2);
If (ch='C') then Writeln('Trả lời sai!');
kq1:=12;
End;
End;
End;
(* Chương trình chính*)
Begin
Clrscr;
play;
Writeln(' Quả thứ', kq1, kq2);
Writeln(' Nhấn Enter kết thúc...');
Readln;
End.
Bài 6/1999 - Giao
điểm các đường thẳng
(Dành cho học sinh THPT)
Program Bai6;
(* Tinh so giao diem cua n duong thang 0 trung nhau *)
Uses Crt;
Const
fn = 'P6.INP';
fg = 'P6.OUT';
max = 100;
exp = 0.0001;
Var
a ,b ,c : array[1..max] of real;
n : integer;
sgd : integer;
Procedure Nhap;
Var
f: text;
i: integer;
Begin
Assign( f ,fn ); Reset( f );
Readln( f ,n );
For i := 1 to n do
Readln( f ,a[i] ,b[i] ,c[i] ); { ax + by = c }
Close( f );
End;
(*--------------------------------------------------------------------------*)
Procedure Chuanbi;
Begin
sgd := 0;
End;
(*--------------------------------------------------------------------------*)
Function Giaodiem( i ,j : integer;Var x ,y : real ) : boolean;
Var
d ,dx ,
dy : real;
Begin
d := a[i] * b[j] - a[j] * b[i];
dx := c[i] * b[j] - c[j] * b[i];
dy := a[i] * c[j] - a[j] * c[i];
If d <> 0 then
begin
x := dx / d;
y := dy / d;
end;
giaodiem := d <> 0;
End;
(*--------------------------------------------------------------------------*)
Function Giatri( i : integer;x ,y : real ) : real;
Begin
Giatri := a[i] * x + b[i] * y - c[i];
End;
(*--------------------------------------------------------------------------*)
Function bang( a ,b : real ) : boolean;
Begin
bang := abs( a - b ) <= exp;
End;
(*--------------------------------------------------------------------------*)
Function Thoaman( i ,j : integer;x ,y : real ) : boolean;
Var
ii: integer;
Begin
Thoaman := false;
For ii := 1 to i - 1 do
If (ii <> j) and bang( giatri( ii ,x ,y ) ,0 ) then
exit;
Thoaman := true;
End;
(*--------------------------------------------------------------------------*)
Function Catrieng( i : integer ) : integer;
Var
ii , gt:integer;
x, y : real;
Begin
gt := 0;
For ii := 1 to i do
If giaodiem( i ,ii ,x ,y ) then
If thoaman( i ,ii ,x ,y ) then Inc( gt );
catrieng := gt;
End;
(*--------------------------------------------------------------------------*)
Procedure Tinhsl;
Var
i : integer;
Begin
For i := 1 to n do
Inc( sgd ,catrieng( i ) );
End;
(*--------------------------------------------------------------------------*)
Procedure GhiKQ;
Begin
Writeln(So giao diem cua cac duong thang la: ' ,sgd );
End;
(*--------------------------------------------------------------------------*)
BEGIN
ClrScr;
Nhap;
Chuanbi;
Tinhsl;
ghiKQ;
END.
(* Tinh so giao diem cua n duong thang 0 trung nhau *)
Uses Crt;
Const
fn = 'P6.INP';
fg = 'P6.OUT';
max = 100;
exp = 0.0001;
Var
a ,b ,c : array[1..max] of real;
n : integer;
sgd : integer;
Procedure Nhap;
Var
f: text;
i: integer;
Begin
Assign( f ,fn ); Reset( f );
Readln( f ,n );
For i := 1 to n do
Readln( f ,a[i] ,b[i] ,c[i] ); { ax + by = c }
Close( f );
End;
(*--------------------------------------------------------------------------*)
Procedure Chuanbi;
Begin
sgd := 0;
End;
(*--------------------------------------------------------------------------*)
Function Giaodiem( i ,j : integer;Var x ,y : real ) : boolean;
Var
d ,dx ,
dy : real;
Begin
d := a[i] * b[j] - a[j] * b[i];
dx := c[i] * b[j] - c[j] * b[i];
dy := a[i] * c[j] - a[j] * c[i];
If d <> 0 then
begin
x := dx / d;
y := dy / d;
end;
giaodiem := d <> 0;
End;
(*--------------------------------------------------------------------------*)
Function Giatri( i : integer;x ,y : real ) : real;
Begin
Giatri := a[i] * x + b[i] * y - c[i];
End;
(*--------------------------------------------------------------------------*)
Function bang( a ,b : real ) : boolean;
Begin
bang := abs( a - b ) <= exp;
End;
(*--------------------------------------------------------------------------*)
Function Thoaman( i ,j : integer;x ,y : real ) : boolean;
Var
ii: integer;
Begin
Thoaman := false;
For ii := 1 to i - 1 do
If (ii <> j) and bang( giatri( ii ,x ,y ) ,0 ) then
exit;
Thoaman := true;
End;
(*--------------------------------------------------------------------------*)
Function Catrieng( i : integer ) : integer;
Var
ii , gt:integer;
x, y : real;
Begin
gt := 0;
For ii := 1 to i do
If giaodiem( i ,ii ,x ,y ) then
If thoaman( i ,ii ,x ,y ) then Inc( gt );
catrieng := gt;
End;
(*--------------------------------------------------------------------------*)
Procedure Tinhsl;
Var
i : integer;
Begin
For i := 1 to n do
Inc( sgd ,catrieng( i ) );
End;
(*--------------------------------------------------------------------------*)
Procedure GhiKQ;
Begin
Writeln(So giao diem cua cac duong thang la: ' ,sgd );
End;
(*--------------------------------------------------------------------------*)
BEGIN
ClrScr;
Nhap;
Chuanbi;
Tinhsl;
ghiKQ;
END.
Bài 7/1999 - Miền
mặt phẳng chia bởi các đường thẳng
(Dành cho học sinh THPT)
Program Bai7;
(* Tinh so giao diem cua n duong thang ko trung nhau *)
Uses Crt;
Const
fn = 'P7.INP';
fg = 'P7.OUT';
max = 100;
exp = 0.0001;
Var
a ,b ,c : array[1..max] of real;
n : integer;
smien : integer;
Procedure Nhap;
Var
f : text;
i : integer;
Begin
Assign( f ,fn ); Reset( f );
Readln( f ,n );
For i := 1 to n do
Readln( f ,a[i] ,b[i] ,c[i] ); { ax + by = c }
Close( f );
End;
(*--------------------------------------------------------------------------*)
Procedure Chuanbi;
Begin
smien := 1;
End;
(*--------------------------------------------------------------------------*)
Function Giaodiem( i ,j : integer;Var x ,y : real ) : boolean;
Var
d ,dx ,dy :real;
Begin
d := a[i] * b[j] - a[j] * b[i];
dx:= c[i] * b[j] - c[j] * b[i];
dy := a[i] * c[j] - a[j] * c[i];
If d <> 0 then
begin
x := dx / d;
y := dy / d;
end;
Giaodiem := d <> 0;
End;
(*--------------------------------------------------------------------------*)
Function Giatri( i : integer;x ,y : real ) : real;
Begin
Giatri := a[i] * x + b[i] * y - c[i];
End;
(*--------------------------------------------------------------------------*)
Function bang( a ,b : real ) : boolean;
Begin
bang := abs( a - b ) <= exp;
End;
(*--------------------------------------------------------------------------*)
Function Thoaman( i : integer;x ,y : real ) : boolean;
Var
ii : integer;
Begin
Thoaman := false;
For ii := 1 to i - 1 do
If bang( Giatri( ii ,x ,y ) ,0 ) then
exit;
Thoaman := true;
End;
(*--------------------------------------------------------------------------*)
Function Cattruoc( i : integer ) : integer;
Var
ii , gt : integer;
x, y : real;
Begin
gt:= 0;
For ii := 1 to i - 1 do
If Giaodiem( i ,ii ,x ,y ) then
If Thoaman( ii ,x ,y ) then Inc( gt );
cattruoc := gt;
End;
(*--------------------------------------------------------------------------*)
Procedure Tinhslmien;
Var
i : integer;
Begin
For i := 1 to n do
Inc( smien ,cattruoc( i ) + 1 );
End;
(*--------------------------------------------------------------------------*)
Procedure GhiKQ;
Begin
Writeln(So mien mat phang duoc chia la: ' ,smien );
End;
(*--------------------------------------------------------------------------*)
BEGIN
Clrscr;
Nhap;
Chuanbi;
Tinhslmien;
GhiKQ;
END.
(* Tinh so giao diem cua n duong thang ko trung nhau *)
Uses Crt;
Const
fn = 'P7.INP';
fg = 'P7.OUT';
max = 100;
exp = 0.0001;
Var
a ,b ,c : array[1..max] of real;
n : integer;
smien : integer;
Procedure Nhap;
Var
f : text;
i : integer;
Begin
Assign( f ,fn ); Reset( f );
Readln( f ,n );
For i := 1 to n do
Readln( f ,a[i] ,b[i] ,c[i] ); { ax + by = c }
Close( f );
End;
(*--------------------------------------------------------------------------*)
Procedure Chuanbi;
Begin
smien := 1;
End;
(*--------------------------------------------------------------------------*)
Function Giaodiem( i ,j : integer;Var x ,y : real ) : boolean;
Var
d ,dx ,dy :real;
Begin
d := a[i] * b[j] - a[j] * b[i];
dx:= c[i] * b[j] - c[j] * b[i];
dy := a[i] * c[j] - a[j] * c[i];
If d <> 0 then
begin
x := dx / d;
y := dy / d;
end;
Giaodiem := d <> 0;
End;
(*--------------------------------------------------------------------------*)
Function Giatri( i : integer;x ,y : real ) : real;
Begin
Giatri := a[i] * x + b[i] * y - c[i];
End;
(*--------------------------------------------------------------------------*)
Function bang( a ,b : real ) : boolean;
Begin
bang := abs( a - b ) <= exp;
End;
(*--------------------------------------------------------------------------*)
Function Thoaman( i : integer;x ,y : real ) : boolean;
Var
ii : integer;
Begin
Thoaman := false;
For ii := 1 to i - 1 do
If bang( Giatri( ii ,x ,y ) ,0 ) then
exit;
Thoaman := true;
End;
(*--------------------------------------------------------------------------*)
Function Cattruoc( i : integer ) : integer;
Var
ii , gt : integer;
x, y : real;
Begin
gt:= 0;
For ii := 1 to i - 1 do
If Giaodiem( i ,ii ,x ,y ) then
If Thoaman( ii ,x ,y ) then Inc( gt );
cattruoc := gt;
End;
(*--------------------------------------------------------------------------*)
Procedure Tinhslmien;
Var
i : integer;
Begin
For i := 1 to n do
Inc( smien ,cattruoc( i ) + 1 );
End;
(*--------------------------------------------------------------------------*)
Procedure GhiKQ;
Begin
Writeln(So mien mat phang duoc chia la: ' ,smien );
End;
(*--------------------------------------------------------------------------*)
BEGIN
Clrscr;
Nhap;
Chuanbi;
Tinhslmien;
GhiKQ;
END.
Bài 8/1999 - Cân
táo
(Dành cho học sinh Tiểu học)
Số lần cân ít nhất là 3. Cách cân
như sau:
Lần
1: Chia 27 quả táo thành 3 phần, mỗi
phần 9 quả. Đặt 2 phần lên 2 đĩa cân. Nếu cân thăng bằng thì quả táo nhẹ nằm ở
phần chưa cân, nếu cân lệch thì quả táo nhẹ nằm ở đĩa cân nhẹ hơn. Sau lần cân
thứ nhất, ta chọn ra được 9 quả táo trong đó có quả táo nhẹ.
Lần
2: Chia 9 quả táo, chọn được ra thành
3 phần, mỗi phần 3 quả. Đặt 2 phần lên 2 đĩa cân. Nếu cân thăng bằng thì quả
táo nhẹ nằm ở phần chưa cân, nếu cân lệch thì quả táo nhẹ nằm ở đĩa cân nhẹ
hơn. Sau lần cân thứ 2, ta chọn ra được 3 quả táo trong đó có quả táo nhẹ.
Lần
3: Lấy 2 trong số 3 quả táo chọn đặt
lên 2 đĩa cân. Nếu cân thăng bằng thì quả táo nhẹ là quả táo còn lại, nếu cân
lệch thì quả táo nhẹ nằm ở đĩa cân nhẹ hơn. Sau ba lần cân ta chọn ra được quả
táo nhẹ.
Bài 9/1999 - Bốc
diêm
(Dành cho học sinh Tiểu học)
Nếu số
lượng que diêm của mỗi dãy là: 3, 5, 8 thì hai bạn Nga và An bạn nào bốc trước
sẽ thắng. Có nhiều cách để người bốc trước sẽ thắng. Giả sử:
- Dãy
thứ nhất cso 8 que diêm.
- Dãy
thứ hai có 5 que diêm.
- Dãy
thứ hai có 3 que diêm.
Nếu Nga
là người bốc trước để thắng, Nga sẽ làm như sau:
1. Bốc hết 8 que diêm ở dãy đầu
tiên. Như vậy còn 2 dãy tổng cộng 8 que. An sẽ phải bốc một số que ở một trong
hai dãy này.
2. Trong trường hợp sau khi An
bốc số diêm chỉ còn ở trên một dãy, Nga sẽ bốc tất cả số diêm còn lại và sẽ
thắng. Nếu sau khi An bốc mà số diêm vẫn còn ở trên hai dãy thì Nga cũng sẽ
phải bốc sao cho đưa An vào thế bất lợi: mỗi dãy trong 2 dãy cuối cùng còn đúng
một que diêm. Nếu chưa đưa An được vào thế bất lợi thì phải bốc sao cho mình
không phải ở thế bất lợi. Chẳng hạn như:
- An bốc 3 que diêm ở dãy thứ 2.
Nga sẽ bốc 1 que ở dãy cuối cùng.
- An bốc 1 que diêm tiếp theo
cũng ở dãy đó. Nga cũng sẽ bốc 1 que ở dãy thứ 3.
- An bốc 1 que tiếp theo. Khi đó,
Nga bốc que diêm cuối cùng và thắng cuộc.
Các bạn cũng có thể thử cho các
trường hợp khác.
Bài 10/1999 - Dãy
số nguyên
(Dành cho học sinh THCS)
Dãy đã cho là dãy các số tự nhiên
viết liền nhau:
123456789 101112...99 100101102...999 100010011002...9999 10000...
9 x 1 = 9
90 x 2 = 180
900 x 3 = 2700
9000 x 4 = 36000 ...
Ta có nhận xét sau:
- Đoạn thứ 1 có 9 chữ số;
- Đoạn thứ 2 có 180 chữ số;
- Đoạn thứ 3 có 2700 chữ số;
- Đoạn thứ 4 có 36000 chữ số;
- Đoạn thứ 5 có 90000 x 5 =
450000 chữ số ...
Với k = 1000 ta có: k = 9 + 180 +
3.270 + 1.
Do đó, chữ số thứ k là chữ số đầu
tiên của số 370, tức là chữ số 3.
Chương trình:
Program Bai10;
Uses crt;
Var k: longInt;
(*--------------------------------------------*)
Function chuso(NN: longInt):char;
Var st:string[10];
dem,M:longInt;
Begin
dem:=0;
M:=1;
Repeat
str(M,st);
dem := dem+length(st);
inc(M);
Until dem >= NN;
chuso := st[length(st) - (dem - NN)]
(*-------------------------------------*)
BEGIN
clrscr;;
write('Nhap k:');
Readln(k);
Writeln('Chu so thu', k,'cua day vo han
cac so nguyen khong am');
write('123456789101112... la:', chu
so(k));
Readln;
END.
Cách giải khác:
var n, Result: LongInt;
procedure ReadInput;
begin
Write('Ban hay nhap so K:
'); Readln(n);
end;
procedure Solution;
var
i, Sum, Num, Digits:
LongInt;
begin
Sum := 9; Num := 1; Digits
:= 1;
while Sum < n do
begin
Num := Num * 10;
Inc(Digits);
Inc(Sum, Num * 9 *
Digits);
end;
Dec(Sum, Num * 9 *
Digits); Dec(n, Sum);
Num := Num + (n - 1) div
Digits;
n := (n - 1) mod Digits +
1;
for i := 1 to Digits - n
do Num := Num div 10;
Result := Num mod 10;
end;
procedure WriteOutput;
begin
Writeln('Chu so can tim
la: ', Result);
Readln;
end;
begin
ReadInput;
Solution;
WriteOutput;
end.
Bài 11/1999 - Dãy
số Fibonaci
(Dành cho học sinh THCS)
{$R+}
const
Inp = 'P11.INP';
Out = 'P11.OUT';
Ind = 46;
var
n: LongInt;
Fibo: array[1..Ind] of LongInt;
procedure Init;
var
i: Integer;
begin
Fibo[1] := 1; Fibo[2] := 1;
for i := 3 to Ind do Fibo[i] := Fibo[i - 1] + Fibo[i - 2];
end;
procedure Solution;
var
i: LongInt;
hfi, hfo: Text;
begin
Assign(hfi, Inp);
Reset(hfi);
Assign(hfo, Out);
Rewrite(hfo);
while not Eof(hfi) do
begin
Readln(hfi, n);
Write(hfo, n, ' = ');
i := Ind; while Fibo[i] > n do Dec(i);
Write(hfo, Fibo[i]);
Dec(n, Fibo[i]);
while n > 0 do
begin
Dec(i);
if n >= Fibo[i] then
begin
Write(hfo, ' + ', Fibo[i]);
Dec(n, Fibo[i]);
end;
end;
Writeln(hfo);
end;
Close(hfo);
Close(hfi);
end;
begin
Init;
Solution;
end.
Bài 12/1999 -
N-mino
(Dành cho học sinh THPT)
Program
Bai12;{Tinh va ve ra tat ca Mino}
Uses Crt;
Const fn = 'NMINO.INP';
fg = 'NMINO.OUT';
max = 16;
Type bang = array[0..max+1,0..max+1] of integer;
Var n : integer;
lonmin : integer;
hinh ,hinh1 ,xet ,dd : bang;
hang ,cot: array[1..max] of integer;
sl : integer;
qi,qj : array[1..max*max] of integer;
sh ,sc :integer;
hangthieu , cotthieu:integer;
slch : longint;
f : text;
Uses Crt;
Const fn = 'NMINO.INP';
fg = 'NMINO.OUT';
max = 16;
Type bang = array[0..max+1,0..max+1] of integer;
Var n : integer;
lonmin : integer;
hinh ,hinh1 ,xet ,dd : bang;
hang ,cot: array[1..max] of integer;
sl : integer;
qi,qj : array[1..max*max] of integer;
sh ,sc :integer;
hangthieu , cotthieu:integer;
slch : longint;
f : text;
Procedure
Nhap;
Var f:text;
Begin
Assign(f,fn); Reset(f);
Readln(f ,n);
Close(f);
End;
Var f:text;
Begin
Assign(f,fn); Reset(f);
Readln(f ,n);
Close(f);
End;
Procedure
Chuanbi;
Begin
lonmin:= trunc(sqrt(n));
If n <> sqr(lonmin) then Inc(lonmin);
slch := 0;
End;
Begin
lonmin:= trunc(sqrt(n));
If n <> sqr(lonmin) then Inc(lonmin);
slch := 0;
End;
Function
min2( a ,b : integer ) : integer;
Begin
If a < b then min2 := a Else min2 := b;
End;
Begin
If a < b then min2 := a Else min2 := b;
End;
Procedure
Taobien( i ,j : integer );
Var ii ,jj : integer;
Begin
FillChar(dd ,SizeOf(dd),1);
FillChar(xet,SizeOf(xet),1);
For ii := 1 to i do
For jj := 1 to j do
begin
dd[ii,jj] := 0;
xet[ii,jj] := 0;
end;
End;
Var ii ,jj : integer;
Begin
FillChar(dd ,SizeOf(dd),1);
FillChar(xet,SizeOf(xet),1);
For ii := 1 to i do
For jj := 1 to j do
begin
dd[ii,jj] := 0;
xet[ii,jj] := 0;
end;
End;
Procedure
Ghinhancauhinh;
Var i ,j : integer;
Begin
Inc(slch);
Writeln(f,sh ,' ' ,sc);
For i := 1 to sh do
begin
For j := 1 to sc do Write(f,(dd[i,j] mod 2):2);
Writeln(f)
end;
End;
Var i ,j : integer;
Begin
Inc(slch);
Writeln(f,sh ,' ' ,sc);
For i := 1 to sh do
begin
For j := 1 to sc do Write(f,(dd[i,j] mod 2):2);
Writeln(f)
end;
End;
Procedure
Quaytrai;
Var hinh1 : bang;
i,j : integer;
Begin
hinh1:= hinh;
For i := 1 to sh do
For j := 1 to sc do hinh[i,j] := hinh1[sc-j+1,i];
End;
Var hinh1 : bang;
i,j : integer;
Begin
hinh1:= hinh;
For i := 1 to sh do
For j := 1 to sc do hinh[i,j] := hinh1[sc-j+1,i];
End;
Procedure
Lathinh;
Var hinh1 : bang;
i ,j : integer;
Begin
hinh1:= hinh;
For i := 1 to sh do
For j := 1 to sc do hinh[i,j] := hinh1[sh-i+1,sc-j+1];
End;
Var hinh1 : bang;
i ,j : integer;
Begin
hinh1:= hinh;
For i := 1 to sh do
For j := 1 to sc do hinh[i,j] := hinh1[sh-i+1,sc-j+1];
End;
Procedure
Daohinh;
Var hinh1 : bang;
i,j : integer;
Begin
hinh1 := hinh;
For i := 1 to sh do
For j := 1 to sc do hinh[i,j] := hinh1[sh-i+1,j];
End;
Var hinh1 : bang;
i,j : integer;
Begin
hinh1 := hinh;
For i := 1 to sh do
For j := 1 to sc do hinh[i,j] := hinh1[sh-i+1,j];
End;
Function
Bethat : boolean;
Var ii,jj :integer;
Begin
Bethat := false;
For ii := 1 to sh do
For jj := 1 to sc do
If hinh[ii,jj] <> hinh1[ii,jj] then
begin
Bethat:= hinh[ii,jj] < hinh1[ii,jj];
exit;
end;
End;
Var ii,jj :integer;
Begin
Bethat := false;
For ii := 1 to sh do
For jj := 1 to sc do
If hinh[ii,jj] <> hinh1[ii,jj] then
begin
Bethat:= hinh[ii,jj] < hinh1[ii,jj];
exit;
end;
End;
Function
Behon : boolean;
Begin
Behon := Bethat;
End;
Begin
Behon := Bethat;
End;
Function
Xethinhvuong : boolean;
Begin
Xethinhvuong := false;
Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Daohinh;
If Behon then exit; Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Xethinhvuong := true;
End;
Begin
Xethinhvuong := false;
Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Daohinh;
If Behon then exit; Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Quaytrai;
If Behon then exit; Xethinhvuong := true;
End;
Function
Xetchunhat : boolean;
Begin
Xetchunhat := false;
Lathinh;
If Behon then exit; Daohinh;
If Behon then exit; Lathinh;
If Behon then exit; Xetchunhat := true;
End;
Begin
Xetchunhat := false;
Lathinh;
If Behon then exit; Daohinh;
If Behon then exit; Lathinh;
If Behon then exit; Xetchunhat := true;
End;
Procedure
Chuyensang( a : bang;Var b : bang );
Var i,j:integer;
Begin
For i := 1 to sh do
For j := 1 to sc do b[i,j] := a[i,j] mod 2;
End;
Var i,j:integer;
Begin
For i := 1 to sh do
For j := 1 to sc do b[i,j] := a[i,j] mod 2;
End;
Procedure
Thughinhancauhinh;
Begin
Chuyensang(dd ,hinh);
hinh1:= hinh;
If sh = sc then begin If not Xethinhvuong then exit; end
Else If not Xetchunhat then exit;
Ghinhancauhinh;
End;
Begin
Chuyensang(dd ,hinh);
hinh1:= hinh;
If sh = sc then begin If not Xethinhvuong then exit; end
Else If not Xetchunhat then exit;
Ghinhancauhinh;
End;
Procedure
Xetthem( i ,j : integer );
Begin
Inc(xet[i,j]);
If xet[i,j] = 1 then
begin
Inc(sl);
qi[sl] := i;
qj[sl] := j
end;
End;
Begin
Inc(xet[i,j]);
If xet[i,j] = 1 then
begin
Inc(sl);
qi[sl] := i;
qj[sl] := j
end;
End;
Procedure
Xetbot( i ,j : integer );
Begin
If xet[i,j] = 1 then Dec(sl);
Dec( xet[i,j] );
End;
Begin
If xet[i,j] = 1 then Dec(sl);
Dec( xet[i,j] );
End;
Procedure
Themdiem( ii : integer );
Var i ,j : integer;
Begin
i := qi[ii];
j := qj[ii];
dd[i,j] := 1;
If dd[i,j-1] = 0 then Xetthem(i ,j-1);
If dd[i,j+1] = 0 then Xetthem(i ,j+1);
If dd[i-1,j] = 0 then Xetthem(i-1,j);
If dd[i+1,j] = 0 then Xetthem(i+1,j);
End;
Var i ,j : integer;
Begin
i := qi[ii];
j := qj[ii];
dd[i,j] := 1;
If dd[i,j-1] = 0 then Xetthem(i ,j-1);
If dd[i,j+1] = 0 then Xetthem(i ,j+1);
If dd[i-1,j] = 0 then Xetthem(i-1,j);
If dd[i+1,j] = 0 then Xetthem(i+1,j);
End;
Procedure
Bodiem( ii : integer );
Var i , j : integer;
Begin
i := qi[ii];
j := qj[ii];
dd[i,j] := 0;
If dd[i,j-1] = 0 then Xetbot(i,j-1);
If dd[i,j+1] = 0 then Xetbot(i,j+1);
If dd[i-1,j] = 0 then Xetbot(i-1,j);
If dd[i+1,j] = 0 then Xetbot(i+1,j);
End;
Var i , j : integer;
Begin
i := qi[ii];
j := qj[ii];
dd[i,j] := 0;
If dd[i,j-1] = 0 then Xetbot(i,j-1);
If dd[i,j+1] = 0 then Xetbot(i,j+1);
If dd[i-1,j] = 0 then Xetbot(i-1,j);
If dd[i+1,j] = 0 then Xetbot(i+1,j);
End;
Procedure
Xethangcot( ii : integer );
Var i ,j :integer;
Begin
i := qi[ii];
j := qj[ii];
Inc(hang[i]);
If hang[i] = 1 then Dec(hangthieu);
Inc(cot[j]);
If cot[j] = 1 then Dec(cotthieu);
End;
Var i ,j :integer;
Begin
i := qi[ii];
j := qj[ii];
Inc(hang[i]);
If hang[i] = 1 then Dec(hangthieu);
Inc(cot[j]);
If cot[j] = 1 then Dec(cotthieu);
End;
Procedure
Xetlaihangcot( ii : integer );
Var i,j : integer;
Begin
i := qi[ii];
j := qj[ii];
If hang[i] = 1 then Inc(hangthieu);
Dec(hang[i]);
If cot[j] = 1 then Inc(cotthieu);
Dec(cot[j]);
End;
Var i,j : integer;
Begin
i := qi[ii];
j := qj[ii];
If hang[i] = 1 then Inc(hangthieu);
Dec(hang[i]);
If cot[j] = 1 then Inc(cotthieu);
Dec(cot[j]);
End;
Procedure
Duyet( i : integer;last : integer );
Var ii :integer;
Begin
If i > n then
begin thughinhancauhinh; exit; end;
For ii := last + 1 to sl do
begin
themdiem(ii);
xethangcot(ii);
If hangthieu + cotthieu <= n - i then duyet(i+1,ii);
Xetlaihangcot(ii);
bodiem(ii);
end;
End;
Var ii :integer;
Begin
If i > n then
begin thughinhancauhinh; exit; end;
For ii := last + 1 to sl do
begin
themdiem(ii);
xethangcot(ii);
If hangthieu + cotthieu <= n - i then duyet(i+1,ii);
Xetlaihangcot(ii);
bodiem(ii);
end;
End;
Procedure
Duyetcauhinh( i ,j : integer );
Var jj : integer;
Begin
sh := i;
sc := j;
FillChar(hang ,SizeOf(hang),0);
FillChar(cot,SizeOf(cot),0);
hangthieu := sh;
cotthieu := sc;
taobien(i ,j);
For jj := 1 to j do
begin
sl:= 1;
qi[1] := 1;
qj[1] := jj;
duyet(1,0);
dd[1,jj] := 2;
end;
End;
Var jj : integer;
Begin
sh := i;
sc := j;
FillChar(hang ,SizeOf(hang),0);
FillChar(cot,SizeOf(cot),0);
hangthieu := sh;
cotthieu := sc;
taobien(i ,j);
For jj := 1 to j do
begin
sl:= 1;
qi[1] := 1;
qj[1] := jj;
duyet(1,0);
dd[1,jj] := 2;
end;
End;
Procedure
Duyethinhbao;
Var i ,j : integer;
minj ,maxj : integer;
Begin
For i := lonmin to n do
begin
minj := (n-1) div i + 1;
maxj := min2(n+1-i,i);
For j := minj to maxj do duyetcauhinh(i,j);
end;
End;
Var i ,j : integer;
minj ,maxj : integer;
Begin
For i := lonmin to n do
begin
minj := (n-1) div i + 1;
maxj := min2(n+1-i,i);
For j := minj to maxj do duyetcauhinh(i,j);
end;
End;
Procedure
Ghicuoi;
Var f : file of char;
s : string;
i : integer;
Begin
str(slch,s);
Assign(f,fg); reset(f);
Seek(f,0);
For i := 1 to length(s) do Write(f,s[i]);
Close(f);
End;
Var f : file of char;
s : string;
i : integer;
Begin
str(slch,s);
Assign(f,fg); reset(f);
Seek(f,0);
For i := 1 to length(s) do Write(f,s[i]);
Close(f);
End;
BEGIN
Clrscr;
Assign(f,fg); Rewrite(f);
Writeln(f ,' ');
Nhap;
Chuanbi;
duyethinhbao;
Close(f);
ghicuoi;
END.
Clrscr;
Assign(f,fg); Rewrite(f);
Writeln(f ,' ');
Nhap;
Chuanbi;
duyethinhbao;
Close(f);
ghicuoi;
END.
Không có nhận xét nào:
Đăng nhận xét